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41The Haigis Formula

Wolfgang Haigis and Kenneth J. Hoffer

�The Thin Lens Formula

Popular formulas for intraocular lens (IOL) 
power calculation like the Hoffer Q [1], the 
Holladay 1 [2], and the SRK/T [3] are based on 
the optics of thin lenses. In thin lens optics, cor-
nea and lens (crystalline or IOL) are replaced 
by infinitely thin lenses (Fig. 41.1) with refrac-
tive powers K (corneal power) and P (IOL 
power), separated by a distance d. This fictional 
distance is sometimes referred to as optical 
anterior chamber depth (ACD, measured from 
epithelium to IOL principle plane), which has 

no measurable counterpart, in contrast to the 
acoustical or optical ACD measured by biome-
ters (from epithelium to lens). In 1997, Holladay 
[4] proposed the term effective lens position 
(ELP) for d.

where DL dioptric power of the lens (or IOL), 
L axial length (AL), R corneal radius of curva-
ture, n = 1.336, d = ACD, RX = refraction (desired 
or actual), dx  =  vertex distance (=12  mm), DC 
dioptric power of the cornea, and nC index of 
refraction of the cornea.

Thus, all theoretical formulas may be reduced 
to the elementary thin lens formula:
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Fig. 41.1  Thin lens model: emmetropic eye where the 
cornea and lens are reduced to infinitely thin lenses
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The theoretical formulas differ in how mea-
surement values from a patient are translated into 
the variables L, d, and DC of Eq. 41.1. Table 41.1 
gives an overview of how different formulas han-
dle this conversion. Included is the calculation 
according to Haigis [5],,A,B which is dealt with in 
more detail later. The individual recipes for data 
translation reflect of course the different working 
set-ups of the formula authors.

The main differences between the theoretical 
formulas lie in the prediction functions for the 
optical ACD or d, i.e., in the terms for d for each 
of their formulas. These functions depend, among 
others, on the AL; they are necessarily based on 
the author’s experience with one or more IOL 
types in the form of individual constants like 
Hoffer’s “personalized ACD” (pACD), 
Holladay’s Surgeon Factor (SF), or the A con-
stant (SRK/T). All of these constants may readily 
be transformed into each other [6, 7]. For exam-
ple, if the A constant =118.0, then the SF = 1.223 
and pACD = 4.97. Figure 41.2 shows such pre-
diction curves (optical ACD d vs AL) for the 

Hoffer Q, Holladay 1, and SRK/T formulas, all 
based on an A constant of 118.0.

Since all IOL constants may be calculated 
from each other, there is basically just one con-
stant, i.e., one number characterizing a given lens 
for all available powers, irrespective of IOL 
shape factor, lens material, index of refraction, 
diameter, etc. This, in the author’s opinion, is 
insufficient for a meaningful lens characteriza-
tion, as will be illustrated below.

�Effect of Lens Geometry on IOL 
Position

Following the concept of Norrby [8] and taking 
the capsular bag equator position (EP) as a mea-
sure for the IOL position and considering small, 
medium, and long eyes, the schematic AL depen-
dence is shown in Fig. 41.3. Small eyes have a 
shallower ACD with the capsular bag equator 
lying more anteriorly, while in long eyes, the lens 
lies deeper in the eye with the bag equator posi-
tion more posteriorly.

This behavior is backed up by clinical findings 
on 15,123 eyes [9] (unpublished data) in 
Fig.  41.4. From preoperative high precision 
immersion ultrasound measurements of ACD 
(AC) and lens thickness (LT) as shown, the AL 
dependence of EP was deduced under the 
assumption EP = AC + 0.4*LT.

Figure 41.5 gives a schematic representation 
of the positions of the image principal planes of 
IOLs with different shape factors and geometry 
(here e.g., plano-convex and asymmetric bicon-
vex) in eyes with different ALs. It is this posi-

Table 41.1  Differences in theoretical IOL formulas: all 
are based on thin lens optics (Eq. 41.1)

Formula nC L IOL constant
SRK/T 1.3330 AL + fx (AL) A constant
Holladay 1 4/3 AL + 0.2 SF
Hoffer Q 1.3360 AL pACD
Haigis 1.3315 AL a0, a1, a2

where nC index of refraction of the cornea, fx function of, 
SF surgeon factor, pACD personalized ACD. AL in these 
formulas is the ultrasound measurement from the cornea 
epithelium to the anterior surface of the retina, whereas 
the optical biometry AL measurement is to the pigment 
epithelium

Fig. 41.2  Prediction 
curves for the optical 
ACD (d) in Eq. 41.1 for 
different theoretical 
formulas and an A 
constant of 118.0 (for 
SRK/T), equivalent to 
SF = 1.223 (for 
Holladay 1), and 
pACD = 4.97 (for Hoffer 
Q)

W. Haigis and K. J. Hoffer
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Fig. 41.3  Schematic of the 
dependence of the EP position of 
the capsular bag equator on the AL 
of the eye

Fig. 41.4  Anterior 
chamber (AC), lens 
thickness (LT), and 
assumed position of the 
capsular bag equator 
position (EP) vs AL for 
15,123 eyes. Data 
points: running means 
and assumption for EP: 
EP = AC + 0.4*LT

tion (of the image principal plane) that 
essentially determines d in Eq. 41.1. It is clearly 
evident from this that different IOLs are char-
acterized by different AL dependencies of their 

optical ACDs. Thus, a curve (e.g., prediction of 
d vs AL) rather than a number (IOL constant) 
seems more useful for the characterization of 
an IOL.

41  The Haigis Formula
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Fig. 41.5  Schematic representation of IOLs of different 
shape factors in eyes with different ALs (from short at the 
top to long at the bottom). The red lines near the anterior 
vertex and the blue near the posterior vertex of both the 

plano-convex and the biconvex IOL denote the positions 
of the image anterior and posterior principal planes, 
respectively, for the 2 IOL types

		 ACpost a0 a AC a LT a AL a CC= + + + +∗ ∗ ∗ ∗
1 2 3 4 	 (41.4)

�Calculations According to Haigis

Using the thick lens algorithm [10] for IOL cal-
culation in the 1980s, we (like many others [11–
13]) were looking for ways to predict the PO IOL 
position by means of multiple regression analysis 
performed on preoperative data [14]. We found 
the main contributions to the predictability of PO 
AC (ACpost) to stem from the AL and the preop-
erative ACD (AC) as shown in Table  41.2. 
Therefore, we predicted the (acoustically or opti-
cally) measurable PO ACD (ACpost) according 
to:

	 ACpost c c AC c AL0 1 2= + +∗ ∗
	 (41.2)

The constants c0, c1, and c2 were followed by a 
double linear regression analysis. Since the thick 
lens formula requires lens design data (e.g., radii 
of curvature, central thickness, and precise 
refractive indices) for every individual IOL 
power, which manufacturers are hesitant to 
release, we turned back again to the thin lens for-
malism of Eq.  41.1. This time, however, we 
applied the regression prediction to the optical 
ACDA.

d Haigis d a0 a1 AC a2 AL( ) = = + +∗ ∗
	 (41.3)

The constants a0, a1, and a2 were found to be 
quite typical for a given IOL [15]. This led to the 
idea of using this set of numbers for the charac-
terization of different IOLs.

W. Haigis and K. J. Hoffer
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Table 41.2  Correlation coefficient for the prediction of the measurable PO ACD using the formula

Parameter used for regression AC LT AL CC AC, LT AC, AL AC,LT,AL AC,LT,AL,CC
Correlation coefficient 68% 36% 44% 6% 68% 70% 70% 71%

Fig. 41.6  AL 
dependence of the 
optical ACD d in 
Eq. 41.1 for IOL types 
90D, 755 U, and SI40 
for the Haigis formula 
with optimized lens 
constants. Note that the 
curves are different not 
only in the vertical 
position but also in the 
form

		 a0 ACDconst meanAC meanAL= − −∗ ∗
0 40 0 10. . 	 (41.5)

where mean AC  =  3.37 and mean AL  =  23.39 
[14].

Using the standard conversion between 
ACDconst and the A constant [6, 7] Eq. 41.5 is 
equivalent to:

	 a0 0 62467 A const 72 434= − −∗. . 	 (41.6)

Thus, the Haigis formula takes the form of 
Eq. 41.1, with d = d(Haigis) given by Eq. 41.3 

and the additional substitutions nC = 1.3315 and 
L = AL (from ultrasound or optical biometry).

�Optimization of Constants

As long as PO results are not available to 
derive the three constants (a0, a1, and a2), the 
Haigis formula has to be used in the standard 

for plano-convex IOL type CILCO KR2U, 
where AC preoperative ACD, LT lens thickness, 
AL axial length, and CC corneal radius of curva-
ture [14].

Olsen [12, 13] uses a similar regression 
approach with even more variables to predict PO 
IOL positions. However, apart from being char-
acterized by their classical ACD constants, no 
further differentiation is made between different 
IOLs. Likewise, Holladay’s IOL calculation pro-
gram does not use more than one lens constant to 
characterize a given IOL.

An essential aspect of Eq. 41.3 lies in the fact 
that with three constants (a0, a1, and a2), it is 
possible to model the AL dependence of the opti-
cal ACD of a given lens, thus characterizing the 
IOL by a curve rather than a number. Since the 
preoperative ACD is dependent on AL (Fig. 41.4), 

d(Haigis), as defined by Eq. 41.3, is a function of 
the AL. The specific form of the resulting curve is 
determined by the specific values of a0, a1, and 
a2 (Fig. 41.6).

Generally, for a given lens, the numerical val-
ues of the three constants (a0, a1, and a2) are 
derived from a double regression analysis of d vs 
AC and AL, where d is the optical ACD produc-
ing the true PO refraction (see below). However, 
for this purpose, the PO data must be available. 
Prior to knowing this, an alternate method to 
determine a0, a1, and a2 is necessary.

It was found [16] that quite a number of IOLs 
could well be described by a fixed value of 
a1  =  0.4 and a2  =  0.1. Therefore, in “standard 
mode,” we set a1 = 0.4 and a2 = 0.1 and derive a0 
from the manufacturer ACD constant ACDconst 
according to:

41  The Haigis Formula
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Fig. 41.7  AL dependence of the optical ACD d in Eq. 41.1 
for IOL type 755 U and Haigis and Hoffer Q formulas using 
standard (solid lines) as well as optimized (dashed lines) 

lens constants. Note that optimization of the Hoffer Q con-
stant results simply in a vertical curve shift, whereas in the 
Haigis algorithm, the curve shape is changed

mode, in which two of the three constants in 
formula 41.2 are set to the default values 
(a1 = 0.4 and a2 = 0.1) and the third constant 
(a0) is calculated from one of the classical lens 
constants (e.g., a pACD, SF or A constant) as 
given by the IOL manufacturer (see Eq. 41.5 or 
Eq. 41.6).

If, however, stable PO refraction results are at 
hand, it is possible to optimize the formula per-
formance by personalizing all three Haigis lens 
constants. This may be done in two ways:

	1.	 Only one constant is personalized, namely a0 
or.

	2.	 All three constants (a0, a1, and a2) are 
optimized.

�Single Optimization (Optimization 
of a0 Only)

If only a0 is optimized, then the situation is com-
parable to optimizing constants for other IOL 
formulas: there is only one number. In this case, 
a0 is iteratively adjusted until the mean predic-
tion error (MPE) for a given set of patient records 
becomes zero, i.e.,

	 MPE Rx Rx 0true calc= − = 	 (41.7)

Here, Rxtrue denotes the spherical equivalent of 
the stable PO refraction at best corrected visual 
acuity (BCVA), and Rxcalc is the calculated refrac-
tion according to:
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Optimizing (personalizing) the a0 is equiva-
lent to shifting the curve, which describes the AL 
dependence of the optical ACD (d), up and down 
until a mean zero prediction error (Eq. 41.7) is 
reached (Fig. 41.7). This is very much like adjust-
ing the pACD constant, the SF or the A constant 
in the other theoretical formulas. It has to be 
noted that in this case, one and the same d vs AL 
curve is used for all IOLs. After personalization 
(as just described), the theoretical formulas differ 
in the way a given IOL is represented by the 
formula-inherent d vs AL curve. However, one 
must remain aware that what may serve well for 
one type of IOL may not work for another IOL 
type (e.g., may differ in shape factor).

With the three constants approach, it is possi-
ble not only to adjust the position of the d vs AL 
curve but also to modify its shape. Thus, different 
IOLs may be characterized by different curves. 
The lens geometry is no longer built into the for-
mula but is defined externally instead.

�Triple Optimization (optimization 
of a0, a1, and a2)

The optimization process, as has already been 
described, goes back to the time when Hoffer 

W. Haigis and K. J. Hoffer
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[17, 18] correlated the ultrasound PO (pseudo-
phakic) ACD with his preoperative ACD as well 
as when the AL was corrected by means of a 
double linear regression analysis. However, 
instead of using the ultrasonically determined 
acoustic ACD, the optical biometer ACD is now 
used for the regression analysis.

As a first step, for every patient record, the d 
value of the optical biometer ACD is calculated, 
which caused the measured PO refraction for the 
implanted IOL power. For this purpose, a qua-
dratic equation for d is easily derived from the 
thin lens formula Eq.  41.1 by elementary alge-
braic transformations:

		 D d D L n z d n L n z D L n zL L L
∗ ∗ ∗ ∗ ∗− +( )∗ + −( ) + =2

0/ / / 	 (41.9)

with a quadratic equation solution: 
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Having calculated d for every patient record, a 
double linear regression analysis is performed 
with d being the dependent variable and AC and 
AL the independent variables. As a result, the 
constants a0, a1, and a2 are obtained such that 
equation d = a0 + a1*AC + a2*AL is fulfilled.

Being aware that the optimization procedure 
determines the d vs AL curve, it is clear that the 
range of ALs for this analysis must be as broad as 
possible. It is of special importance to include 
ALs <21  mm and  >  25  mm to cover the total 
range of available IOL powers. This implies that 
the analysis has to be based on a sufficiently large 
number of patients (a minimum >50). If only a 
small AL range would serve as a basis for optimi-
zation, good results naturally can only be 
expected for this very range while out-of-range 
ALs could lead to less accurate results.

�Clinical Measurements

�Methods

For an illustration of the formula performance 
and comparison with current power calculation 
algorithms, we retrospectively reviewed 990 
patients implanted in the capsular bag with either:

	1.	 A biconvex silicone plate lens [Chiron 
Adatomed 90D] n = 118,

	2.	 A biconvex PMMA lens [Rayner 755  U] 
n = 101 or,

	3.	 A biconvex silicone lens [Allergan SI40NB] 
n = 771.

Expected refraction was calculated using the 
formulas Haigis, Hoffer Q, Holladay 1, SRK II, 
and SRK/T and compared to the actually achieved 
stable PO refractions.

�Results

First, the lens constants (as published by the 
manufacturers) were used for IOL power calcula-
tion; the results of which are shown in Table 41.3. 
The Haigis formula operating in non-optimized 
standard mode can be seen to produce slightly 
myopic results, whereas all other formulas end 
up on the hyperopic side. Clinically, it is always 
better to err on the slight myopic side than the 
hyperopic. The amount of deviation from target 
refraction differs from lens to lens. The SRK II 
results differ significantly from those of the theo-
retical formulas with respect to standard devia-
tion as well as prediction percentages.

For each formula and IOL, individualized 
constants were subsequently calculated so as to 
produce a mean zero prediction error between 
actual and calculated refraction. Table  41.4 
shows the results. Again, SRK II performs 
worse than the theoretic formulas, which pro-
duce good results. It is not possible to decide 
from this data which one of these actually is the 

41  The Haigis Formula
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Table 41.4  Mean error (ME) between actual and calculated refraction (REFtrue-calc) and percentages of refraction pre-
dictions within ±1.00 D and ± 2.00 D, if optimized constants were used with each formula. Haigis*1: single optimiza-
tion (only a0 optimized); Haigis*3: triple optimization (all 3 constants optimized)

Optimized Rayner 755 U (n = 101) Chiron 90D (n = 118) Allergan SI40 (n = 771)
Formula ME [D] % ± 2D % ± 1D ME [D] % ± 2D % ± 1D % ± 2D % ± 1D
SRK II 0.00 ± 0.75 98.0 85.1 0.00 ± 1.07 94.1 66.9 97.8 86.4
SRK/T 0.00 ± 0.64 100.0 88.1 0.00 ± 0.77 97.5 83.9 98.3 90.7
Holladay 1 0.00 ± 0.63 100.0 86.1 0.00 ± 0.73 98.3 86.4 98.8 92.6
Hoffer Q 0.00 ± 0.65 100.0 88.1 0.00 ± 0.72 99.2 83.9 99.1 91.4
Haigis*1 0.00 ± 0.66 99.0 87.1 0.00 ± 0.76 98.3 81.4 98.7 92.5
Haigis*3 −0.04 ± 0.63 100.0 87.1 −0.01 ± 0.72 99.2 83.9 99.1 93.0

Table 41.5  Mean absolute error (MAE) between actual and calculated refraction (REFtrue-calc) before and after optimi-
zation of constants for each formula in three IOL groups

MAE Rayner 755 U (n = 101) Chiron 90D (n = 118) Allergan SI40 (n = 771)

Formula
MAE ± SD Pre 
Opt

MAE ± SD Post 
Opt

MAE ± SD Pre 
Opt

MAE ± SD Post 
Opt

MAE ± SD Pre 
Opt

MAE ± SD Post 
Opt

SRK II 0.81 ± 0.59 0.56 ± 0.49 0.82 ± 1.07 0.83 ± 0.67 0.63 ± 0.56 0.52 ± 0.52
SRK/T 0.66 ± 0.55 0.50 ± 0.41 0.77 ± 0.61 0.60 ± 0.48 0.51 ± 0.48 0.44 ± 0.44
Holladay 
1

0.61 ± 0.51 0.48 ± 0.41 0.72 ± 0.59 0.56 ± 0.47 0.48 ± 0.44 0.42 ± 0.42

Hoffer Q 0.62 ± 0.51 0.50 ± 0.41 0.72 ± 0.58 0.54 ± 0.47 0.50 ± 0.44 0.43 ± 0.42
Haigis*1 0.56 ± 0.41 0.52 ± 0.41 0.65 ± 0.46 0.58 ± 0.49 0.54 ± 0.47 0.42 ± 0.42
Haigis*3 ------ 0.49 ± 0.40 ------ 0.54 ± 0.48 ------ 0.42 ± 0.42

Table 41.3  Mean error (ME) between actual and calculated refraction (REF true-calc) using three IOL styles and 
percentages of refraction predictions within ±1.00 D and ± 2.00 D of error using manufacturer lens constants with each 
formula. The Haigis formula is used in “standard mode”

Standard Rayner 755 U (n = 101) Chiron 90D (n = 118) Allergan SI40 (n = 771)
Formula ME [D] % ± 2D % ± 1D ME [D] % ± 2D % ± 1D ME [D] % ± 2D % ± 1D
SRK II 0.68 ± 0.74 95.0 71.3 0.82 ± 1.07 89.0 54.2 0.42 ± 0.73 96.8 82.9
SRK/T 0.53 ± 0.68 96.0 81.2 0.55 ± 0.82 94.9 70.3 0.29 ± 0.64 98.2 90.4
Holladay 1 0.46 ± 0.65 97.0 82.2 0.53 ± 0.77 95.8 72.0 0.24 ± 0.60 98.4 91.4
Hoffer Q 0.48 ± 0.65 97.0 84.2 0.56 ± 0.74 95.8 76.3 0.29 ± 0.60 98.7 91.2
Haigis −0.21 ± 0.67 100 87.1 −0.28 ± 0.75 97.5 78.0 −0.38 ± 0.60 98.2 87.3

“best” formula since a possible ranking would 
change from IOL to IOL. The Haigis opt3 (with 
all three constants optimized) obviously per-
forms better than Haigis opt1 (with only a0 opti-
mized) and compares favorably to the other 
formulas. In general, it is evident from Tables 
41.3 and 41.4 that individualization of lens con-
stants results in a better performance of all 
formulas.

When comparing different algorithms, it is 
essential to consider not only the mean prediction 
error (ME) but also the mean absolute error 
(MAE)1. Table 41.5 shows the MAE before and 

after optimization of constants. For all formulas, 
the MAEs are also reduced by constant personal-
ization while, again, the SRK II ranks last, and 
Haigis opt3 can be found in the top group.

For IOL 755  U, optimization yielded values 
between 117.68 and 118.84; for IOL 90D, opti-
mization values were between 118.31 and 119.73, 
and for IOL SI40NB, values were from 117.55 to 
118.52. Thus, in terms of A constants, optimiza-
tion led to changes in them of the order of ~1.20 
D for the 755 U, ~1.40 D for the 90D, and ~ 1.00 
D for the SI40NB.  The slopes (m) will be dis-
cussed below.

W. Haigis and K. J. Hoffer
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Fig. 41.8  AL 
dependence of the 
prediction error ΔRx 
(= Rxtrue−Rxcalc) 
between actual and 
calculated PO refraction 
with IOL type 755 U for 
the Holladay 1 and SRK 
II formulas with 
optimized lens constants

Table 41.6  Summary of the optimized lens constants found and translated into A constants for ease of comparison and 
slopes of the regression line y = m x + t describing the AL dependence of the prediction error ΔREFtrue-calc between actual 
and calculated PO refraction for different IOL formulas. The smaller the slope (m): the smaller the AL dependent error 
of refraction prediction

Optimized Rayner 755 U (n = 101) Chiron 90D (n = 118) Allergan SI40 (n = 771)
Formula opt A-con Slope opt A-con Slope opt A-con Slope
SRK II 118.84 −0.29 119.73 −0.56 118.52 −0.20
SRK/T 118.61 −0.16 119.29 −0.15 118.33 −0.05
Holladay 1 118.59 −0.13 119.33 −0.14 118.31 −0.01
Hoffer Q 118.59 −0.11 119.35 −0.06 118.36 +0.05
Haigis*1 117.76 −0.09 118.40 −0.06 117.57 +0.03
Haigis*3 117.68 0.00 118.31 −0.01 117.55 0.00

where opt A-con optimized A constant. A constants used: 755 U (118.0), 90D (118.7), and SI40 (118.0)

Fig. 41.9  AL 
dependence of the 
prediction error ΔRx 
(= Rxtrue−Rxcalc) 
between actual and 
calculated PO refraction 
with IOL type 755 U for 
the Haigis and Hoffer Q 
formulas with optimized 
lens constants

Minimizing refraction errors should not only 
produce a mean error of zero but ideally a zero 
prediction error for all ALs. It may well be that 
equal errors of opposite signs for long and short 
eyes cancel each other out, thus still producing an 
average of zero. Therefore, it is important to 
check the AL dependence of the prediction error 
ΔRx (=  Rxtrue−Rxcalc  =  ME). The slopes of the 
respective regression lines should be as close to 
zero as possible to indicate an AL-independent 

behavior. For lens 755  U, Fig.  41.8 shows the 
prediction error ΔRx between actual and calcu-
lated PO refraction vs AL with optimized con-
stants for SRK II and Holladay 1 and Fig. 41.9 
for the Hoffer Q and Haigis formulas. The respec-
tive slopes (m) for all formulas and all IOLs are 
also summarized in Table 41.6. It clearly follows 
from these findings that the “single-constant-
formulas” (Hoffer Q, Holladay 1, SRK II and 
SRK/T) “pay a price” for a mean zero error with 

41  The Haigis Formula
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Table 41.7  Mean absolute prediction errors (MAEs) in different AL ranges for 2 IOLs (Alcon MA60BM and SA60AT) 
using current IOL power formulas

AL Haigis Hoffer Q Holladay 1 Holladay 2 SRK/T
20–21.99 0.25 0.25 0.25–0.50, 0.25 0.51–1.00.
22–24.49 0.25 0.25 0.25 0.25 0.25
24.50–25.99 0.25 0.25 0.25 0.25 0.25
26–28 0.25 0.25–0.50, 0.25 0.25 0.25
28–30 0.25 0.25–0.50, 0.25 0.25 0.25–0.50,
Minus power IOLs 0.25 Not recommended 0.25–0.50, 0.25 0.51–1.00.

non-zero prediction errors in short and long eyes. 
The largest is for the SRK II and the least is for 
the Hoffer Q.  The better performance of the 
Haigis algorithm as indicated in the zero slopes 
stems from using three IOL constants instead of 
just one as pointed out earlier.

We see here the AL dependence of the optical 
ACD (d) for the Hoffer Q and Haigis formulas in 
standard and optimized modes (for lens 755 U). 
These graphs may be compared to Fig.  41.2 
(which is based on the respective standard con-
stants). For the plot characterizing the Haigis cal-
culation, which makes use of AC in addition to 
AL (see Eq.  41.5), the model dependence of 
Fig. 41.4 was used. Optimization causes a verti-
cal translation of the standard Hoffer Q curve, 
whereas, in the Haigis algorithm, the shape of the 
curve is altered. Thus, it is possible to create an 
individual curve shape for a given lens as opposed 
to the standard shape used in the other formulas.

Accordingly, different IOLs represented by 
different sets of constants a0, a1, and a2 will have 
different d vs AL curves, as is shown in Fig. 41.6 
for our 3 IOLs: each one is individually posi-
tioned, with individual shape.

Once properly optimized (over a large range 
of ALs), the three constants approach allows 
good results irrespective of AL.  This has also 
been observed by others, as Table 41.7 shows.

�In Summary

The Haigis formula is based on thin lens optics 
just as does the Hoffer Q, Holladay 1, and 
SRK/T.  In this respect, it makes use of the ele-

mentary basic thin lens formula. It does not com-
pare to SRK I/II, which are purely empirical. 
However, while all other formulas use only one 
constant (the pACD constant, the SF, or the A 
constant) for a given IOL, the Haigis formula 
uses three (a0, a1, and a2). In addition, apart from 
the AL, the ACD is taken to serve as a predictor 
for the PO IOL position. By this approach, it is 
possible to represent an IOL by a curve (optical 
ACD vs AL) rather than just a single number. The 
three constants can be derived from a statistical 
analysis of PO results for a sufficient number of 
patients (minimum >50) supplied for a given 
IOL.

In the standard mode, i.e., as long as this opti-
mization process has not been carried out yet, 
two of the three constants of the Haigis formula 
are set to default values (a1 = 0.4 and a2 = 0.1), 
whereas the third constant (a0) is derived from 
one of the classical lens constants. (e.g., A con-
stant) given by the IOL manufacturer. Therefore, 
in default mode, the Haigis formula is “just 
another theoretical formula,” which, in general, 
has a slightly better performance for long and 
short eyes due to the fact that the clinical experi-
ence in the formula-inherent prediction curves 
stems from more recent IOLs as compared to 
other IOL formulas.

The power of the Haigis formula evolves after 
optimization, i.e., individualization of constants, 
as it allows a mean zero prediction error for the 
PO refractions irrespective of AL. There are two 
optimization modes:

	1.	 Classical optimization on the basis of 1 con-
stant, which is inherent in other theoretical 
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formulas: to individualize the constant of a 
specific IOL. The constant under question is 
iteratively changed to achieve a mean zero 
prediction error for the postop refraction. 
However, a mean zero error might be due to 
balanced errors in short and long eyes. 
Generally, the smallest AL-dependent errors 
were found with the Haigis formula.

	2.	 Optimization of three constants: in this case, 
the constants a0, a1, and a2 are derived from a 
statistical analysis of PO results. The range of 
ALs for this analysis should be as broad as 
possible. Thus, for every IOL, an individual 
curve is defined for optimum prediction of the 
PO IOL position allowing a mean zero predic-
tion error for all ALs.

Performance of the Haigis formula with no 
personalization (optimization) is as good or bad 
as the other theoretical formulas, and with opti-
mization of 1 constant, it is often better for short 
and long eyes. When all three constants are opti-
mized, performance is better for all ALs and all 
IOL types.
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