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The nineteenth-century American author Mark 
Twain once observed that change occurs at the 
edges and works its way in. Rather than instantly 
being thrust upon us, a fundamental shift in how 
we work gradually arises from areas outside 
things familiar.

In 1962, Everett Rodgers outlined how indi-
viduals are likely to adopt new technology in his 
book The Diffusion of Innovations [1]. Most are 
unfamiliar with this seminal work, but almost 
everyone knows the vocabulary originating 
from it.

Rodgers observed that 16% of any group pre-
sented with a new technology consists of what he 
refers to as “laggards” who will change what they 
do only if no other option is available. Another 
34% consists of a “late majority” who borders on 
cynical and only follows established norms. 
Thirty-four percent are the “early majority” who 
will try something new only after someone else 
tries it first. 13.5% are “early adopters” who 
quickly see the value of a new idea and incorpo-
rate it. 2.5% could be termed “innovators.” The 
adoption of new technology is never universal, 
regardless of how transformative it may be.

It is a little appreciated fact that much of the 
technology used in ophthalmology comes to us 
from other areas. We all know the story of Charles 
Kelman. His idea of phacoemulsification for cat-
aract surgery arose from a form of tooth-cleaning 
technology in the 1950s. The first American 
physicist to receive the Nobel Prize, Albert 
Michelson, developed the nineteenth-century 
principle of interferometry. Adolf Fercher at Carl 
Zeiss in Germany and Wolfgang Haigis at the 
University of Würzburg used this principle to 
measure the axial length of the human eye with a 
previously unknown accuracy and reproducibil-
ity [2–5].

There are many examples of ophthalmology, 
in general, and eye surgeons, in particular, freely 
borrowing technologies from other fields. The 
adoption of artificial intelligence for intraocular 
lens (IOL) power selection is no different.

 Accuracy

The evolution of intraocular lens power calcula-
tion accuracy, and the technology driving it, is 
often one step behind the demands of each new 
and more sophisticated generation of intraocular 
lenses. For more than 40 years, ophthalmologists 
have been pursuing perfection, only to face a 
variety of obstacles at multiple levels.

A significant limitation of all vergence-based 
intraocular lens power selection methods is 
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 estimating the effective lens position (ELP), which 
can account for as much as 30% of the calculation 
accuracy [6, 7]. Even though more modern meth-
ods tend to do better than older ones, an exact plan 
for determining the ELP remains elusive.

The Haigis formula optimization database of 
more than 300,000 cases shows that most cata-
ract surgeons have a ± 0.50 D accuracy of 78%. 
Only 6% of surgeons have an 84% ±0.50 D accu-
racy, while less than 1% of surgeons have a ± 0.50 
D accuracy of 92% or better [8]. As cataract sur-
geons, we all are being judged by patients and 
peers by our refractive outcomes. There remains 
much room for improvement.

While traditional and more modern formulas 
each have benefits, it is becoming evident that 
IOL power selection based solely on Gaussian 
optics may have reached an expiration date. 
Given this seemingly insurmountable limitation, 
why not move in an entirely different direction? 
[9] In other words, fundamentally change the 
conditions of the exercise. Exploring how an arti-
ficial intelligence model might be used to solve 
this problem seemed to be the obvious next step 
in today’s world of increasingly sophisticated 
development software.

 Artificial Intelligence for IOL Power 
Selection

The first attempt at using artificial intelligence 
for IOL power selection was by the American 
ophthalmologist Gerald Clarke, MD, assisted by 
Jeannie Burmeister, RN, in 1997 [10]. The 
authors used a neural network and compared the 
accuracy of these predictions to the first version 
of the Holladay formula published in 1988 [11].

In this study, using conventional 10-MHz 
ultrasound to measure axial length, the Holladay 
formula had a ± 0.50 D accuracy of 38%. In com-
parison, the neural network had an accuracy of 
62.5%. While not consistent with today’s accu-
racy standards, the use of artificial intelligence 
resulted in an enormous improvement. However, 

such an approach did not gain traction due to 
rudimentary computing power, software that was 
challenging to set up and refine, and a tendency 
to overfit the data. Like many groundbreaking 
ideas, it was years ahead of its time. Artificial 
intelligence for this purpose would not be tried 
again in a meaningful way until more than a 
decade later.

The way a neural network works is by mimick-
ing the human neuron. It has inputs similar to neu-
ronal dendrites and a system of summation and 
recalculation, very much like a cell body. It trans-
fers the output in a way similar to a neural axon. 
During the evaluation phase, inputs merge into a 
final prediction through the network containing 
mathematical weights. These weights are adjusted 
and then readjusted throughout training by repeat-
edly moving prediction errors through the net-
work via a process known as backpropagation.

In 2012, a core group of ophthalmologists and 
Peter Maloney, an engineer working at the 
American company MathWorks, began to inves-
tigate IOL power selection using artificial intel-
ligence, employing radial basis functions [12]. 
The original investigators included Li Wang, MD 
PhD, and Doug Koch, MD, both from Baylor 
University in Houston, Texas; Sheridan Lamb, 
MD, a private practitioner in Du Page, Illinois; 
Johnny Guyton, MD, a private practitioner in 
Warner-Robins, Georgia; Adi Abulafia, MD, a 
hospital-based ophthalmologist in Israel and 
Warren Hill, MD, as the project leader. Later, 
Jonas Haehnle, PhD, a mathematician working at 
Haag-Streit AG in König, Switzerland, was 
added. This group has since expanded to a total 
of 44 investigators in 22 countries.

The project’s stated objective was to 
increase patient safety and physician confi-
dence and reduce the many burdens associated 
with an unanticipated refractive outcome. The 
final goal was to create a self-validating IOL 
power selection method as simple to use as the 
iPhone, independent of vergence calculations 
and without reliance on the effective lens posi-
tion [8].
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 Making the Most of What’s 
Available

A significant benefit of artificial intelligence is 
that it can bypass some shortcomings of current 
measurement technologies and make the most of 
what’s available. This approach is also well- 
suited to solve real-world problems where ideal 
models are unavailable or less accurate than 
desired. IOL power selection is the poster child 
for the lack of a perfect, real-world model.

Physical models based on Gaussian optics 
assume that the measurements correctly repre-
sent the physical reality, which is rarely the case. 
Some of these measurements have systematic 
biases that must be identified and, if possible, 
corrected. There are also varying levels of mea-
surement uncertainty. For example, the combina-
tion of directly measured anterior and posterior 
keratometry for virgin eyes is generally less 
accurate than anterior keratometry and a theoreti-
cal mathematical model for the posterior cornea. 
Significant challenges also arise with measure-
ments that use the summation of segmental axial 
length. The lens thickness measurement has sys-
tematic errors and a high uncertainty level due to 
the cataractous lens’s unknown refractive index.

Physical models also need to make assump-
tions about certain aspects that cannot be mea-
sured. As previously mentioned, the effective 
lens position is an essential aspect of IOL power 
selection based on a Gaussian model. There are 
times when the physical model amplifies a given 
prediction error. This is more of a problem for 
advanced physical models than simpler ones. 
These ultimately must be solved using data- 
driven approaches.

Artificial intelligence model-based approaches 
avoid such errors. For example, ELP prediction 
errors are no longer amplified with high IOL powers. 
Therefore, even the first version of Hill- RBF achieved 
accuracies in short eyes that were better than the 
more traditional IOL calculations of that time.

And not least of all, purely data-driven 
approaches using artificial intelligence are also 

free of an implicit bias of the researcher. Our 
method learns from the data how good the mea-
surements can be.

 Developing a Real-World Artificial 
Intelligence Calculator

The first problem our team faced was determin-
ing which preoperative measurements we 
should evaluate. Initially, 13 parameters were 
considered, including nontraditional metrics 
such as the spherical aberration of the anterior 
cornea, pupil size, patient gender, patient age, 
as well as the more traditional preoperative 
measurements of axial length, central corneal 
power, anterior chamber depth, lens thickness, 
the IOL power implanted, the postoperative 
spherical equivalent, and the horizontal corneal 
diameter. A genetic algorithm was used to help 
sort this out.

Essentially, a genetic algorithm is an evolu-
tionary, iterative factor selection process. A basic 
model is created, followed by multiple iterations. 
Subsequent iterations are then modified in a semi-
random manner, creating a series of new models. 
During the optimization process, the best-per-
forming candidate models are identified, retained, 
and then ranked. This exercise is repeated, and 
those factors that produce the best-performing 
models are identified over time.

This approach has similarities to the process 
of natural selection as described by Darwin but 
would be more correctly termed artificial selec-
tion. It has been shown to outperform manual 
optimization methods [13–17].

The preoperative measurements resulting in 
the highest overall prediction accuracy were 1. 
axial length, 2. mean keratometry, 3. anterior 
chamber depth, 4. the observed postoperative 
spherical equivalent, and 5. the IOL power 
implanted.

Using 681 eyes implanted with the Alcon 
SN60WF intraocular lens, we fit this data to a 
97.8% ±0.50 D accuracy for the artifical intelli-
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Table 42.1 Genetic algorithm factor selection

Number of factors selected 3 4 5 6 7 8
PostOpSE PostOpSE PostOpSE PostOpSE PostOpSE PostOpSE
Axial 
length

Axial 
length

Axial 
length

Axial 
length

Axial 
length

Axial 
length

Calculation factors Kmean Kmean Kmean Kmean Kmean Kmean
ACD ACD ACD ACD ACD

PreOpSE PreOpSE PreOpSE PreOpSE
Age Age Age

CCT CCT
CD

Fitting dataset (within ±0.50 D) 91.2% 97.8% 93.1% 94.6% 95.1% 94.8%
Validation dataset (within ±0.50 
D)

82.6% 90.2% 89.3% 92.2% 91.9% 92.7%

Number of out-of-bounds points 9 15 35 57 73 92
Overall ranking 6 1 5 2 3 4

Fig. 42.1 Genetic algorithm factor selection

gence model. 20% of this database had been held 
out for independent validation. The resulting 
±0.50 D accuracy for this independent validation 
dataset was 90.2%. These outcomes were very 
encouraging, suggesting that we were on a solid 
footing (Table 42.1) (Fig. 42.1).

Confident in the preoperative factors selected, this 
data was then fit to an artificial intelligence model. 
For the activation function, a radial basis function 
was used in the hidden layer. The difference between 
the output layer and the fitting dataset was calculated. 
This process was then recalculated using a backward 
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Fig. 42.2 The basic organization of a radial basis function neural network used for IOL power selection

Fig. 42.3 The initial design for the creation of the Hill-RBF IOL power selection method

propagation cycle, and the output was adjusted until 
a maximum accuracy was obtained [11] (Fig. 42.2).

Our first experience showed several unantici-
pated features. First, we were able to take a 
cloud of data and reduce it to a straight line. 
Second, the calculation method showed no bias, 
indicating that the accuracy would be limited 

only by the quality and quantity of data. Whether 
this was a long eye, a short eye, or an eye with 
an unusual anterior segment, only the breadth 
and depth of the patient database mattered. The 
initial design for the creation of the Hill-RBF 
IOL power selection method is outlined in 
Fig. 42.3.

42 Hill-RBF: Improving IOL Power Selection by Artificial Intelligence
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 Boundary Models

One standard tool in engineering is the concept of 
a boundary model. The idea behind this is to 
identify a data range outer boundary edge, inside 
which will still result in a specific level of calcu-
lation accuracy.

Artificial intelligence-based predictions for 
many different applications routinely have such 
meta-models that make predictions about predic-
tion accuracy. Far from being a restriction with 
the erroneous assumption that all out-of-bounds 
calculations are useless, a boundary model 
instead makes transparent the approach’s limita-
tions that other methods typically hide.

The boundary model for the Hill-RBF method 
was created by developing a surface in a four- 
dimensional space that separates the region 
where the training data guarantees a 90% predic-
tion ±0.50 D accuracy from the area where no 
such guarantee exists. The four dimensions are 1. 
axial length, 2. anterior chamber depth, 3. mean 
keratometry, and 4. the predicted postoperative 

spherical equivalent. This surface can be visual-
ized in the form of six pairwise boundaries, as 
shown in Fig. 42.4.

Those cases where all data points fall within 
all boundary models are identified as “in-
bounds,” and those where one or more of the 
data points fall outside any boundary model are 
identified as “out-of-bounds.” The user is noti-
fied as to the boundary status of each calculation 
(Fig. 42.5).

Our initial experience showed Hill-RBF to be 
no worse when calculating out-of-bounds cases 
than other IOL calculation methods. Globally, 
the boundary model makes known the limitations 
of all technologies and can be used as an addi-
tional tool to manage patient expectations.

As the breadth and depth of the patient data-
base increases, the surface of the four- dimensional 
space also increases, with a resulting decrease in 
the number of out-of-bounds indications. By the 
time version 3 was completed, enough patient 
data was available that even highly unusual eyes 
would give an in-bounds indication (Fig. 42.6).

Fig. 42.4 The six pairwise boundary models used for version 1 of the Hill-RBF artificial intelligence IOL power selec-
tion method

W. E. Hill and J. Haehnle
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Fig. 42.5 Boundary model of version 2 of the Hill-RBF artificial intelligence IOL power selection method. Note how 
preoperative measurements that were out-of-bounds for version 1 are now in-bounds measurements for version 2

Fig. 42.6 The six pairwise boundary models for version 3 of the Hill-RBF artificial intelligence IOL power selection method. 
Note that for all preoperative measurements, a highly unusual eye still falls within the borders of each boundary model

42 Hill-RBF: Improving IOL Power Selection by Artificial Intelligence
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A curious feature of the Hill-RBF method was 
that the in-bounds and the out-of-bounds accura-
cies were often similar for a wide range of 
 surgeon datasets for the moderate to high axial 
hyperope.

 First Prospective Study

By 2016, there was enough data to successfully 
create a useable artificial intelligence model and 
conduct a prospective study. This study consisted 
of 459 consecutive cases carried out at three inde-
pendent study centers with an IOL power ranging 
from +7.50 D to +30.00 D, axial lengths ranging 
from 20.97  mm to 29.10  mm, a preoperative 
anterior chamber depth ranging from 2.13 mm to 
4.59 mm, and a mean central corneal power rang-
ing from 39.59 D to 48.06 D. The overall ±0.50 D 
accuracy for all cases in this study was 91.0% 
[17] (Fig. 42.7).

The following year, Roman and his group pre-
sented a study at the Los Angeles meeting of the 
American Society of Cataract and Refractive 
Surgery showing that the Hill-RBF method had a 
half-diopter accuracy of 92%, confirmation of the 
real-world accuracy and reproducibility of the 
boundary modeling process [18].

 Availability to the Worldwide 
Ophthalmic Community

The initial success of this calculation method led 
to its inclusion within the Haag-Streit EyeSuite 
software. There was also created an online calcula-
tor at www.rbfcalculator.com for use by the world-
wide ophthalmic community without charge [19].

By March 2018, a total of more than 12,000 
eyes had been collected from our study centers 
around the world. This expanded dataset was 
refitted to a new artificial intelligence model as 
version 2, focusing on improved accuracy for the 
high axial hyperope and the addition of low 
power meniscus design intraocular lenses down 
to −5.00 diopters. This additional data also 
allowed for a greatly expanded boundary model. 
By 2023, approximately 15,000 caluclations 
were being performed on a weekly basis for the 
online version of the calculator.

By December 2020, the patient database had been 
further expanded and significantly refined, with 
improved accuracy for high axial hyperopes with 
IOL powers up to +34.00 diopters. There was also 
improved accuracy for eyes with odd combinations 
of anterior segment measurements such as unusual 
keratometry, horizontal corneal diameter, lens thick-
ness, and the central corneal thickness (CCT).

Fig. 42.7 The first prospective study using version 1 of the Hill-RBF artificial intelligence IOL power selection method

W. E. Hill and J. Haehnle
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Fig. 42.8 Unpublished prerelease validation study of version 3 of the Hill-RBF artificial intelligence IOL power selec-
tion method

It should also be noted that artificial intelli-
gence is capable of uncovering previously unap-
preciated relationships. The discovery that gender 
can exert an influence on IOL power is an exam-
ple. Gender was also added as a calculation factor 
for version 3.

Currently, version 3 is available on the Haag- 
Streit Lenstar LS-900 and the online calculator at 
rbfcalculator.com. This most recent version has 
almost no out-of-bounds indications for normal 
eyes undergoing cataract surgery and a signifi-
cantly reduced number of out-of-bounds presen-
tations for unusual eyes.

During the validation process for version 3, 
a study was carried out of 9940 eyes not used 

to create the artificial intelligence model. 
Version 3 showed a weighted ±0.50 D accu-
racy of 91.2%. This level of accuracy is 
expected, given a 90% accuracy boundary 
model. Using this same  database, version 2 of 
the RBF model had a  ±  0.50 D accuracy of 
89.3% (Fig. 42.8).

 Current Accuracy

A study in the Journal of Cataract and Refractive 
Surgery concluded that version 3 of the Hill-RBF 
method has the lowest standard deviation and 
best overall ±0.50 D accuracy of the available 

42 Hill-RBF: Improving IOL Power Selection by Artificial Intelligence
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Fig. 42.9 The refractive accuracy of IOL power selection methods currently in use in 2021. (Tessler M, Cohen S, Wang 
L, et al. J Cataract Refract Surg. 2021 May 18 Published ahead of print. Used with permission)

Fig. 42.10 Comparison of a heteroscedastic standard 
deviation and the corresponding p-value of IOL power 
selection methods currently in use in 2021. (Tessler M, 

Cohen S, Wang L, et  al. J Cataract Refract Surg. 2021 
May 18 Published ahead of print. Used with permission)

calculation methods currently in use [20] 
(Figs. 42.9 and 42.10).

 New Applications for Increased 
Sensitivity and Accuracy

During travels to Taiwan, Hong Kong, and main-
land China, our Chinese colleagues told us that 
they were not happy with the accuracy of tradi-
tional vergence formulas developed using data-
bases based mostly on Caucasian eyes.

Unpublished work by our teams has shown that 
the Chinese and Caucasian eyes appear to have sub-
tle anatomic differences that influence IOL power 
selection. Mathematical tools with adequate sensi-
tivity to detect subtle differences between Caucasian 
and Han Chinese eyes are now available.

Presently, a multicenter study is underway to 
develop an artificial intelligence model to 
improve IOL power selection accuracy for the 
Han Chinese eye [21, 22]. We now have study 
centers in the cities of Hangzhou, Guangzhou, 
Singapore, Hong Kong, and Taipei.

W. E. Hill and J. Haehnle
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 Challenges

An undeniable challenge is that any data-driven 
approach is only as good as the data used for its 
creation. We are grateful beyond words to the 
many surgeons who helped make Hill-RBF a 
success by contributing patient data.

 Summary

The renowned Austrian American pianist Arthur 
Schnabel once said Mozart’s piano sonatas are 
“too easy for children and too difficult for profes-
sionals.” [23] For surgeons, the highly accurate 
outcomes of an artificial intelligence solution 
may seem simple. However, the complexity can 
push us to the edge of our abilities to develop 
these solutions.

As previously stated, a 78% ±0.50 D accuracy 
is typical using standard technology. With careful 
attention to preoperative measurement quality, 
ocular surface optimization, and more modern 
vergence formulas, this accuracy can improve to 
84% or better. However, with the same attention 
to preoperative measurements, plus the addition 
of IOL power selection by artificial intelligence, 
the possibility of ±0.50 D accuracy of 90% is 
readily achievable.

We believe that the future of ophthalmology is 
bright. Incremental improvements in IOL power 
selection accuracy will eventually take us toward 
the goal of a 100% ±0.50 D accuracy.

Disclosures

Dr. Hill licenses the Hill-RBF method to Haag-Streit AG 

Switzerland for use on the Lenstar LS900.
Dr. Haehnle is an employee of Haag-Streit AG, Köniz, 
Switzerland.
The services of MathWorks were supported, in part, by an 
unrestricted grant from Haag-Streit AG, Switzerland.
The online Hill-RBF IOL power calculator at https://
rbfcalculator.com is provided without charge to the global 
ophthalmic community.
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