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 Introduction

The first formulas to determine the power of an 
IOL to achieve a specific refractive outcome were 
introduced in the 1970s by Colenbrander, 
Fyodorov, and Binkhorst. [1–3] Over the ensuing 
50  years, many significant advances have been 
made to improve outcomes. Reasons for this have 
been more precise measurements of the structural 
variables of the eye in addition to improved theo-
retical analysis of these variables. Further, 
“adjustments” to these formulas were made when 
the formulas appeared to underperform. Our 
interest and contribution are the way we visualize 
formulas, compare them, combine them, and ulti-
mately adjust them using artificial intelligence. 
Our ability to achieve this has occurred because 
computing power and modeling advancements 
have made this much more viable.

Formulas throughout the years have been 
described in multiple ways, one of which is by 
“generations.” [4] However, some formulas do 
not uniquely fit into a specific category. The SRK 
I was a regression-based formula characterized as 
the first generation and used actual outcome data 
for its development. [5, 6] This first empiric for-
mula was further modified by axial length. [7] 
Perhaps, this was the first attempt at “adjusting” a 
formula.

The next generation of formulas was theoreti-
cal in that they used the measurement of axial 
length and corneal power to predict the effective 
lens position of the implanted IOL. These formu-
las included the Hoffer Q, Holladay 1, and 
SRK/T. [8–10] Further, important to our work is 
that particular formulas have been proven to 
work best with specific eyes. For instance, it was 
generally accepted that the Hoffer Q worked par-
ticularly well with short eyes, Holladay 1 with 
average eyes, and SRK/T with longer eyes. This 
was likely related to the way that the effective 
lens position was calculated by each formula.

There has also been much interest and work 
over the last 25 years to determine the variables 
beyond axial length and corneal power that may 
lead to improved outcomes. Additional variables 
have been shown to improve outcomes when 
accounted for individually. For instance, the 
Wang-Koch adjustment for axial length has been 
applied to eyes greater than 25 mm. [11, 12] It is 
doubtful that any axial length adjustment should 
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start and stop at exactly 25 mm. Others have pro-
posed incorporating additional variables to 
account for a multitude of factors. The Holladay 
2 formula released in 1996 includes additional 
variables of lens thickness, corneal diameter dis-
tance, preoperative refraction, and age [13]. 
Other potential variables that have been sug-
gested to have an effect on IOL prediction include 
equatorial lens position, age, race, gender, apha-
kic refraction, relative ratio of various eye seg-
ments, C-factor, posterior corneal power, corneal 
thickness, specific lens design, and exact power 
of the IOL [4, 14–19]. These variables do not 
occur in a vacuum and are likely intimately 
related to other variables such as ACD.

So, with the following assumptions we started 
to work on and continue to modify our formula. 
These assumptions include that specific formulas 
perform better in certain eyes, targeted “adjust-
ments” can improve outcomes, and there are 
multiple variables that can be used with these 
adjustments. If now one takes into consideration 

the computing power that is available, there 
seems to be a path forward that uses all of these 
ideas to optimize outcomes.

 LSF 1.0

The first step for our group in developing and 
working with formulas was to start thinking about 
them differently. Although various theoretical for-
mulas seemed to use different constants and vari-
ables, their mathematical structure was very 
similar. This “visual” interpretation of formulas 
has been used in other mathematical disciplines. 
Using the best “peer-reviewed” literature, we cre-
ated a formula that used multiple parts of various 
formulas and added adjustments. Figure  47.1 
shows what the formula looked like graphically 
when it was first published. [20] This initial itera-
tion that we described in the article included parts 
of the Hoffer Q, the Holladay 1, and the 
SRK/T. Further, the Wang-Koch adjustment was 

Fig. 47.1 Original Super Formula LSF 1.0 with adjustments
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used where appropriate. We certainly could have 
chosen more formulas and adjustments to include 
but decided upon this for our initial iteration. 
Further, as mentioned in our original article, we 
felt that this approach leads to a better conceptual 
understanding of formulas and becomes a frame-
work for further improvements.

One additional but important facet of thinking 
about these formulas differently is that specific 
formulas and specific variables within them can 
be compared. For instance, Fig.  47.2 demon-
strates a graphical analysis of where formulas 
diverge in their prediction by more than one diop-
ter. The green areas demonstrate when formulas, 
given a set of variables, are similar. The red areas 
show when the predictions diverge. Resolving 
these areas of greatest discrepancy is of clinical 
relevance as we try to understand and improve 
formulas in these particular regions.

Analyzing the differences between formulas 
can allow for better allocation of resources to 
determine where advances will likely come from 
and what variables will lead to them. Also, we are 
able to observe subtle differences in how a par-
ticular variable such as ELP calculation can 
affect a particular formula [21].

The use of multiple formulas leads to better 
outcomes by selecting the most accurate formula 
for a particular eye and has been demonstrated in 
the literature throughout the years. Data pre-
sented from our group at ASCRS also demon-
strated superior results when compared against 
modern formulas with this approach reaching 
85% of eyes within 0.5 diopters of predicted 
refraction, which was the best of all formulas 
tested [22].

To our knowledge, only one other study has 
attempted to analyze the original iteration. Cooke 

Fig. 47.2 Ladas-Siddiqui plot showing areas of agreement and divergence among formulae
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Fig. 47.3 Schematic of “targeted” adjustments

et al. published a paper where they demonstrated 
that in eyes of all axial lengths, it performed well 
with approximately 80% within 0.5 diopters of 
predicted refraction [23]. This was one of the 
best-performing formulas; however, the author 
attempted to program it himself without contact-
ing our group so we are not sure that it was done 
correctly and included all adjustments. The 
authors also made an interesting comment in the 
manuscript that is pertinent to our discussion 
here. He noted, “one peculiarity of the Super 
Formula is that it could not be optimized. The 
mean prediction error could not be brought to 
zero.” Optimizing it correctly by accounting for 
the different regions of the formula would have 
perhaps resulted in even better performance.

The ultimate benefit of the super formula is 
that it is a framework to adjust and improve going 
forward. With this approach, one can adjust or 
target short eyes rather than move an A-constant 
up or down across a range of eyes. For instance, 
Fig. 47.3 is a schematic of how a particular region 
(short axial length) can be targeted and adjusted 

without influencing other regions of the formula. 
This is similar to what is done with the well- 
accepted Wang-Koch adjustment for long eyes.

 LSF 2.0. The Introduction of AI

After deciding on a starting point or “frame-
work,” we began to refine and improve the origi-
nal LSF 1.0 formula. Historically, as mentioned 
previously, a formula was adjusted by moving the 
A-constant up or down across the entire spectrum 
of eyes. Indeed, surgeons were told to “personal-
ize” a formula based on twenty or so cases. The 
thought of adjusting formulas based on relatively 
few outcomes is not uncommon. For example, 
instances of a specific formula recommendation 
or “adjustment” to a particular set of eyes have 
been based on studies with less than 100 out-
comes [8, 11, 24, 25]. These thought leaders had 
less resources and outcome data to work with. 
Further, as new IOLs came on the market, the 
Users Group for Interferometry (ULIB) was 
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Fig. 47.4 Schematic of 
our AI algorithm used to 
adjust a formula

developed to hone A-constants for large groups 
of surgeons. While all of this was certainly help-
ful and improved outcomes, it seemed to us that 
outcome analysis could be improved upon by 
treating “adjustments” differently.

Thus, further advancements and adjustments 
are unlikely to be conceived as single variables or 
discrete formulas, and progress using such 
approaches likely would be inefficient compared 
to machine learning methods. Artificial intelli-
gence and deep learning seem particularly suited 
for this task and have the ability to “weigh” the 
effect of multiple variables on reaching a desired 
outcome.

There are two categories of machine learning, 
and both could be applicable to cataract surgery 
and IOL calculations. These include  unsupervised 
and supervised learning. Unsupervised learning 
uses input data to discover similarities among 
datasets. Unsupervised learning has been used by 
our group to predict which eyes are particularly 
susceptible to poor refractive outcomes, for 
instance, predicting eyes that are likely to have an 
outcome of greater than one diopter of targeted 
refraction.

Supervised learning, which is more pertinent 
to our discussion here, is the other branch of 
machine learning that utilizes outcome data, in 
addition to the input variables, to develop a pre-
dictive model. This is the type of learning that we 
primarily use to improve formulas. Regression- 
based supervised learning uses specific algo-
rithms to establish the relationship between the 
input variables it is given and the outcome. 

Cataract surgery and IOL calculations are partic-
ularly suited to this task in medicine. This is 
because cataract surgery is precise, its inputs and 
outcomes are mathematical, and the outcome is 
known within a matter of weeks. Methods of 
supervised nonlinear regression machine learn-
ing models that we use include support vector 
regression, extreme gradient boost, and neural 
networks.

As mentioned earlier, our approach to AI dif-
fers from others in that it starts with a “blueprint” 
or framework formula (the original LSF) and 
uses outcome data to “adjust” each eye individu-
ally. The approach described in this paper is con-
trasted with forms of deep learning such as the 
Hill-RBF (radial basis function) that “back calcu-
late” an algorithm from a fixed dataset. With our 
approach, there are no instances where a calcula-
tion is “out of bounds” because of paucity of data 
[26]. A schematic of our methodology is demon-
strated in Fig. 47.4. As seen in the figure, we use 
the input variables of axial length, corneal power, 
and ACD and then develop an algorithm that 
“predicts” the error. This error would be seam-
lessly used to adjust an eye with similar input 
variables. By doing this, we mitigate the potential 
downsides of AI while maximizing its ability to 
refine a formula. Also, this particular approach 
can be used to add additional input variables such 
as posterior corneal power or total corneal power.

Our initial algorithm to introduce AI used vet-
ted and refined outcome data supplied by in- 
house data and trusted colleagues. The use of 
outcome data for AI and its reliability cannot be 
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emphasized enough. We feel that our concept of 
adjusting a baseline formula is novel and unique. 
The LSF 2.0 included further adjustments based 
on outside studies that included 8000 eyes and an 
in-house library of outcome data that included 
3000 eyes. This was used to adjust the formula 
and was tested on our internal data. We currently 
have more than 6000 eyes available in our library 
data and continue to test, refine, and introduce 
new algorithms.

Our formula has recently been tested and per-
formed well compared to all modern formulas 
with one of the lowest mean absolute errors [27]. 
Indeed, the results of this study are shown in the 
table below. The predicted error demonstrated the 
lowest standard deviation of all formulas tested 
as well as superior results for eyes within pre-
dicted refraction.

PE ± SD MedAE
PE ≤ ±0.50 
D

PE ≤ ±1.00 
D

−0.003 ± 0.366 0.220 85.71% 98.90%

In addition to creating AI-enhanced formulas 
from our original baseline formula, we are also 
able to improve existing formulas. Recent work 

from our group has demonstrated that we can 
improve multiple generations of formulas with 
our methodology [28]. Indeed, multiple super-
vised learning algorithms were used to improve 
the MAE, MedAE, and eyes within 0.5 diopters 
of the target with various formulas. Other work 
presented elsewhere has shown that this can be 
done with other formulas such as the Barrett 
Universal II and Haigis. Interestingly, when we 
enhance a formula with a specific set of variables, 
we see each formula improve to a similar thresh-
old. From a theoretical standpoint, it is perhaps 
predictable that each algorithm was able to pre-
dict and adjust each of the formula’s “errors” 
individually and for each eye in a way that could 
never be written in a mathematical formula by a 
human.

The most recent version of our formula can 
be found at www.iolcalc.com. The formula is 
updated as needed and will continue to evolve. 
The input of the formula is straightforward, and 
biometer inputs can be uploaded and auto- 
populated to the interface seen below in 
Fig. 47.5.

The Ladas Super Formula can also be accessed 
securely via a smartphone application (Fig. 47.6).

Fig. 47.5 Data input screen on iolcalc.com

J. Ladas et al.
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Fig. 47.6 Smart phone app for calculations and input of 
outcome data

 Automation of the Process and Next 
Steps

Generally, refining IOL formulas has required the 
availability of accurate postoperative data. 
Usually, these data are composed of preoperative 
biometry and postoperative manifest refraction 
(MRx) data taken from multiple high-volume 
surgeons. However, MRx measurements are 
often suboptimal due to technique variability, 
room length, patient’s subjective participation, 
and time taken to perform measurements. The 
use of autorefraction (ARx) or wavefront data 
can potentially help eliminate most issues that 

occur with MRx acquisition. However, the cor-
relation between ARx and MRx for the purposes 
of IOL formula optimization is still unclear and is 
being currently investigated in ongoing studies. 
Given a correlation exists between the two 
modalities for this purpose, then integration of AI 
in this schema may be useful by allowing the col-
lection of big data and leading to the develop-
ment of AI-based IOL formulas.

We have presented a pilot study that demon-
strated no significant difference between the 
spherical equivalent of manifest refraction and 
autorefraction in pseudophakic eyes [29]. Further, 
we can demonstrate that MRx can be substituted 
with ARx for basic refinement of formulas.

There are many potential benefits of AI inte-
gration in automated refraction. Customized 
AI-IOL calculation formulas may be developed 
for a given surgeon using the surgeon’s own post-
operative data. This could help account for 
surgeon- to-surgeon variation, which is responsi-
ble for a significant portion of error in current 
IOL calculation methodologies. This could also 
allow for a system of optimization, which 
improves upon itself in a recurrent manner. 
Furthermore, with the “big data” stored within an 
automated refractor, it will be able to characterize 
an eye as one with “standard” parameters or one 
with “unusual” parameters. Thus, AI could pre-
operatively highlight eyes that are “at risk” for a 
postoperative refractive surprise.

 Conclusion

It takes time for ideas to catch on, but the use of 
artificial intelligence will definitely be a part of 
the future of IOL calculations. While better 
mathematical algorithms will certainly be devel-
oped by our group and others in and outside 
ophthalmology, I believe our approach that uses 
both deep learning algorithms coupled with the 
accumulation of massive amounts of objective 
postoperative data to further refine formulas 
will eventually become the norm. Only time 
will tell.
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