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3Gaussian Optics

Basic Optics  

Jean-Philippe Colliac

�Fundamental Hypotheses

Let us retain that in an isotropic medium, the ray 
of light is defined by the ideal line normal to the 
wave surface in which the light energy spreads 
when diffraction is neglected. The experiment 
shows that, for the very low wave lengths, the 
wave phenomena can be neglected: geometrical 
optics appears as the approximation of the very 
low wave lengths of wave optics. Fermat’s prin-
ciple, also called the principle of least time, states 
that the path taken by a ray of light between two 
given points is the path that can be traversed in 
the least time. In order to be true on all the cases, 
”least” must be replaced by ”stationary” with 
respect to variations of the path: the path taking 
by the optics ray between two points A and B is 
stationary. The equivalence between the Snell–
Descartes law and the Fermat principle in the 
case of refraction is proved with an analytical 
demonstration.

Gaussian approximation (from the German 
mathematician and physicist, Carl Friedrich 
Gauss, 1777–1855) or paraxial approximation is 
the linear approximation of the geometrical 
optics. The rays of light make small angles with 
the optical axis, and the distance between the 
rays and the optical axis is short.

�Classical Study in Paraxial Optics

�Paraxial Trace Through a Spherical 
Surface

If the angle of incidence i and the angle of refrac-
tion i′  remain small enough so that we can 
assume the cosine to be unity. We obtain the clas-
sic equation of conjugation (Fig. 3.1): 
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By definition, the dioptric power or vergence of a 
spherical surface, which separates two media 
with indices n and n′ , is 
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where r SC=  is the radius of curvature in alge-
braical value of which the sign is linked to the 
direction of the incident light. When r is expressed 
in meter, the unity for the dioptric power is the 
diopter (δ ). Because the angles of incidence i 
and the angle of refraction i′  remain small, their 
sines may be replaced with their values in radians 
and the Snell–Descartes law: 

	 n nsin sini ' i'� 	 (3.2)
becomes the Kepler law: 

	 ni n i� ' ' 	 (3.3)
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Fig. 3.1  Paraxial trace 
through a spherical 
surface with center C

In the paraxial approximation the spherical aber-
ration is not considered. Also in this approxima-
tion, a plane perpendicular to the axis at A has as 
image of all its points a plane perpendicular to 
the axis at A′ . The transverse magnification MT  
is the ratio of any image length to its correspond-
ing object length. If y AB=  and y A B� � � �,  we 
have 
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A positive magnification corresponds to an erect 
image and a negative magnification to an inverted 
image.

Rays in object space, parallel to the axis and 
crossing a refractive spherical surface or a lens, 
intersect in the image space the axis at the rear 
focal point or image focal point F′ . Rays in image 
space, parallel to the axis, intersect in the object 
space the axis at the front focal point or object 
focal point F. The principal focal planes are the 
planes perpendicular to the axis at the focal points. 
An object on the axis whose image is located on 
the image focal plane is at the infinity; its abscissa 
is the image focal distance f ′ . An object on the 

axis whose image is at the infinity is located on the 
object focal plane; its abscissa is the object focal 
distance f. The abscissae of the focal distances f 
and f ′  are relative to the apex as the origin. Thus 
using the classic equation of conjugation (3.1), we 
obtain this fundamental relation: 
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 or 
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(3.6)

�Lagrange–Helmholtz Relation

Let a spherical interface between a first medium 
with a refractive index n and a second medium 
with a greater refractive index n′ , with a center 
of curvature C, a radius r, and an apex S. The size 
of the object AB and of its image A’B’ is y and y′
, respectively. After a refraction at M with an inci-
dent angle i and a refraction angle i′ , the incident 
ray AM  goes to the direction of MA′ . The inci-
dent ray BC  goes through the interface without 
deviation. The angles of the rays CAM and CA’M 
with the axis are α  and α ’, respectively. By 
sign convention α  is positive and ��  is negative. 
Since the triangles CAB and CA’B’ are similar 
(Fig. 3.2), 

	 SM SA SA� � � � � �tan tan ,� � 	
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Fig. 3.2  Refraction at a 
single spherical surface 
and Lagrange–
Helmholtz relation. In 
the case pictured, α  
and ��  have opposite 
signs, so the transverse 
magnification is negative

as we are in paraxial approximation the angles 
are small and the small-angle approximation is 
applied: tangents of the angles equal their values 
expressed in radians: 

	 SA SA� �� � � and according to the Eq. (3.4) 	
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we obtain the Lagrange–Helmholtz relation: 

	 n y n y' ' ' 	 (3.7)

The Lagrange–Helmholtz relation is important 
and expresses the fact that the quantity n yα  or 
paraxial invariant remains constant when light 
passes through any refracting surface. The for-
mula gives the relationship between transverse 
magnification, angular magnification, and axial 
magnification.

�Centered System

A centered system is a succession of refractive 
surfaces that have the same axis. Their centers are 
all situated on the same straight line which is the 
axis of revolution of the system. For each refrac-
tive surface the image serves as the object of the 
following refractive surface. Each refractive sur-
face establishes a homographic conjugation 
between the object and its image.

�Principal Points and Focal Lengths

An incident ray parallel to the axis (Fig. 3.3) is 
refracted so as to pass through the image focal 
point F′ . Point P′  is the intersection of this inci-
dent ray and of the refracted ray. The plane tan-
gent to the point P′  is called the image principal 
plane. This plane is the locus of all the points P′  
of which the orthogonal projection on the axis is 
the point H′ . This intersection point H′  on the 
axis is the image principal point. The quantity 
f H F� � � �  is called the image focal length 

(Fig. 3.3).
We define in an identical manner the object 

principal plane. The point P is located at the 
intersection of an incident ray which goes through 
the object focal point F and of the ray which 
refracts at the point P′  parallel to the axis. The 
plane tangent to the point P is called the object 
principal plane. This plane is the locus of all the 
points P of which the orthogonal projection on 
the axis is the point H. This intersection H on the 
axis is the object principal point. The quantity 
f HF=  is called the object focal length 

(Fig. 3.3).
Given an object FG , the incident ray GH  

which intersects the axis at the point H makes 
with the axis the angle α . This ray GH  emerges 
at the point H′  making an angle ��  with the 
axis. The incident ray GH , parallel to the axis, 
which intersects the principal image plane at K′ , 
emerges at the point K′  along K F′ ′  making an 
angle ��  with the axis (Fig. 3.4). Applying the 
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Fig. 3.3  Focal points and principal planes

Fig. 3.4  Focal lengths

Fig. 3.5  Nodal points

Lagrange–Helmholtz relation (3.7) and noting 
that FG H K� � �  or y y� � , we obtain 

	 n n' ' 	 (3.8)
Moreover as 
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and we get
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The object and image focal lenghts are always of 
the opposite sign.

�Nodal Points

The object nodal point N and the image nodal 
point N′  are cardinal points located on the axis. 
They are such that each incident ray that passes 
through the object nodal point N emerges from 
the image nodal point N′  as a ray parallel to the 
incident ray. This output ray has the same direc-
tion as the input ray with a parallel offset (Fig. 3.5). 
So the incident ray going through N and emerging 
at N′  forms with the axis the same angles α .

Let us take a point G on the object focal plane. 
An incident ray going through G and parallel to 
the axis emerges at a point P′  and then through 

the image point F′  with a direction parallel to an 
incident ray going through G and the nodal point 
N.

The triangles GFN and P H F′ ′ ′  are equal and 
RNN R′ ′  is a parallelogram, and therefore 

	

FN H F f F N HF f
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, ,

, . 	

In the frequently encountered situation where the 
refractive index is the same in front of and behind 
the optical system, the nodal points coincide with 
the principal points. In a spherical refractive sur-
face, the distance HH′  between the two princi-
pal points is nil and both object and image nodal 
points are coincident with the center of the spher-
ical refractive surface.

�Relation of Conjugation 
and Transverse Magnification

Knowledge of the focal points and of the focal 
lengths completely determines the system. The 
principal points and nodal points result 
immediately from it. The abscissas of any two 
conjugate points and the magnification can be put 
in various forms, all of which are various cases of 
the general homographic relation.

 
	1.	 Origin at the focal points

Let ζ  be the abscissa of the object point A 
when we place the origin at the object focal 
point F, FA � � . Let � �  be the abscissa of 
the image point A ′  measured from the image 
focal point F ′ , F A� � � �� . Moreover HF f= , 
H F f� � � � , AB y= , and A B y� � � � .

The triangles ABF and HSF are similar as 
well as the triangles A B F′ ′ ′  and H TF′ ′ . The 
ratio of their sides is therefore equal. 
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Figure  3.6 can also be used to show that 

AB H T� �  and A B HS� � �  
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The transverse magnification is 
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(3.10)

Thus we obtain Newton’s conjugation relation: 

	 �� ' = f f'	 (3.11)

Positive and negative values of  y y′ charac-
terize, respectively, an erect or an inverted 
image, relative to the object.

	2.	 Origin at the principal points

Let x HA f� � ��  and x H A f� � � � � � � �� . 

By replacing in the Newton relation (3–11) ζ  

by x f−  and � �  by x f� � � , we get 

	 fx f x xx� � � � �, 	

and dividing by xx′ , we obtain 
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or 
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The conjugation relation is 
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The transverse magnification is obtained using 
the Lagrange–Helmholtz relation (3–7) 

	 ny n y� �� � � �. 	

The transverse magnification is 
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�Dioptric Power

The dioptric power is defined by 

	
D n

f
n
f� �– '
'	 (3.15)

A positive or convergent system (positive D) thus 
possesses a negative object focal length and a 
positive image focal length. For a negative or 
divergent system (negative D), the object focal 
length is positive and the image focal length is 
negative. Instead of power, in the optics books 
“D” is called “V ” or “vergence,” but this term has 
another meaning in binocular vision, and thus, in 
ophthalmology, it is better to use the term of 
“dioptric power.”

�Magnification

In optics, the magnification γ  is the ratio of the 
size of an image to the size of the object creating 
it. There are four types of magnification: the 
transverse magnification (also called linear or lat-
eral), the angular magnification, the longitudinal 
magnification, and the pupillary magnification 
(Fig. 3.7 and Table 3.1).
 

Fig. 3.6  Relation of 
conjugation, AB y=  
and A B y� � � �
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Fig. 3.7  Magnification

Table 3.1  Magnification

Descartes Newton
Position of 
the object

x HA= � � FA

Position of 
the image

x H A� � � � � � � � �F A
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	1.	 Transverse magnification has been described 
above.

If the origins of the optical system are at 
the focal points, transverse magnification MT  
is 
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(3.16)

If the origins of the optical system are at the 
principal points, transverse magnification 
MT  is 
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	2.	 Angular magnification
The Abbe sine condition in mathematical 

terms is 

	 nAB nsin sin' A'B' ' 	 (3.18)

Introducing the transverse magnification MT  in 
the Abbe sine equation, 
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In the Gaussian approximation the angles are 
small and we get the angular magnification 
Mα : 

	
M sin

sin '
'
	

(3.19)

From the two previous equations, we get the 
Lagrange–Helmholtz relation: 
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so 
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	3.	 Longitudinal magnification
The Herschell condition in mathematical 
terms is 

	
nAC nsin sin

22

2 2
' A'C' '

	 (3.22)

Introducing the longitudinal magnification 
ML ,
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The Herschell condition is written as 
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In the Gaussian approximation the angles are 
small and we get 

	

sin

sin
.

2

2

2 2
22

2

�

�
�
��

�
�

�
�
�

�
�
� �

�
�

��
�
�

�
�
�

n

n
M

n

n
ML T

	

Let the longitudinal magnification ML  be 

	
M n

n ML T� ' 2

	 (3.24)

	4.	 The pupillary magnification is the ratio of the 
diameter of the entrance pupil to the diameter 
of the exit pupil.

�Combination of Two Systems

Let there be a first centered system with object 
and image principal points H1 and ′H1

, with 
refractive indices (object and image) n1  and ′n1

, 
with object and image focal points F1  and ′F1

, 

with object and image focal lengths f H F1 1 1=  

and � � ��f H F1 1 1 , and with power D1 .
Let there be likewise a second centered sys-

tem with object and image principal points H2  
and ′H2 , with refractive indices (object and 
image) n2  and ′n2

, with object and image focal 
points F2  and ′F2

, with object and image focal 

lengths f H F2 2 2=  and � � � �f H F2 2 2
, and with 

power D2 .
The two systems are placed end to end, on a 

common axis with the same medium between the 
two systems, so � �n n1 2

. The combination of the 
two systems has for object index n n= 1  and for 

image index n n� � �
2
. Optics Interval is defined by 

� � �F F1 2
 (Fig 3.8).

 
	(a)	 Determination of the object focal point

If we need to get an emerging ray of the 
second system which emerges parallel to the 

axis, the incident ray of the second system 
must go through the object focal point F2 . 
The object focal point F of the combination 
of the two systems will be defined as being 
the object having the image F2  through the 
first system. Applying Newton’s formula to 
the first system, we get 

	 F F F fF f1 2 11 1
� �� .	 (3.25)

The position of the object focal point F of 
the combination of the two systems is 

	
FF f f
1

1 1
'
	

(3.26)

	(b)	 Determination of the image focal point
An incident ray on the first system, paral-

lel to the axis, emerges from the first system 
going through the image focal point ′F1

. The 
image focal point F′  of the combination of 
the two systems is none other than the image 
of ′F1

 through the second system. Applying 
Newton’s formula to the second system, we 
get 

	 F F fF F f2 21 2 2
� � �� � .	 (3.27)

The position of the image focal point F′  of 
the combination of the two systems is 

	
F F f f

2

2 2' ' '–
	

(3.28)

	(c)	 Determination of the object focal length
The object principal plane is the locus of 

all the K points of which the projection on 
the axis is the image principal point H. 
Applying the Thales theorem which says that 
if a straight line is drawn parallel to a side of 
a triangle, then it divides the other two sides 
proportionally (Fig. 3.8): 
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Fig. 3.8  Compound thick lens
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The object focal length is 

	
f HF f f

1 2

	 (3.29)

	(d)	 Determination of the image focal length
The image principal plane is the locus of 

all the K′  points of which the projection on 
the axis is the image principal point H′ . 
Applying the Thales theorem (Fig. 3.8), 
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The image focal length is 

	
f H F f f' ' ' ' '– 1 2

	 (3.30)

Through the combination of two systems, F1  
and ′F2  are conjugated. Furthermore wet get 
these other relations: 
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(3.31)

	(e)	 Determination of dioptric power for a com-
pound of two systems

The dioptric power or vergence of each 
system is given by 
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(3.32)
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and the power of the two systems is given by 
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The optics interval can be break down as 
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and we get the Gullstrand relation: 
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�Single Lens

After the refracting surface where there is only 
one interface, the simplest centered system is the 
lens. The lens has two spherical refractive sur-
faces. The cornea is a meniscus lens, and the 
crystalline lens is biconvex. For the first refrac-
tive surface, the refractive indices of the object 
and image media are n1  and ′n1 , and the radius of 
curvature is r1 . 

	
D n n

r1

1

1

� 1' –
	 (3.36)

For the second refractive surface, the refractives 
indices of the object and image media are n2  and 
′n2 , and the radius of curvature is r2 . 
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(3.37)

If the lens of index n is placed in a medium with an 
index n0 , we have n nn� ��1 2  and n n n0 1 2� � � . If 
the lens thickness on the optical axis is t, and 
according to the formula of combination, we get 
the power of the lens 

	
D n n r r
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t
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2
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(3.38)

For a biconvex lens with radii r1  and r2  and 
diameter d, the thickness of the lens t is calcu-
lated with the formula of coupola (Figs.  3.9, 
3.10). The height of each coupola of the lens is 
h1  and h2 , and the thickness at the border of the 
lens is t0 . The thickness of the lens is 
t h t h� � �1 0 2  with 

h r r h r r dd
1 1 1

2

2
1 2

2 2 2

2

2
1 2

44
– – ––

//

and

	
(3.39)

�Entrance and Exit Pupils

The pupil is the surface limited by the inner bor-
der of the iris. The pupil of the human eye acts as 
the aperture stop of the eye. When the real pupil 
is seen from outside, an observer sees the 
entrance pupil which is a virtual image of the real 
pupil as seen through the corneal refraction. In 
the example below, entrance and exit pupils of 
the human eye are calculated with the values of 
Le Grand’s theoretical eye.

 
	1.	 The entrance pupil ∆0  is conjugated to the 

real pupil ∆  in the object space when the light 
beam goes through the sub-optical system 
which is anterior to the pupil (cornea). In this 
example we calculate the position and the 
diameter of the entrance pupil of the theoreti-
cal eye. We assume that the anterior surface of 
the iris is in a frontal plane tangent to the cris-
talline lens apex. The pupil is at the distance 
of 3 60. mm  from the corneal apex S. The 
position of the principal planes of the cornea 
is at 0 06. mm  in front of the cornea. 

Fig. 3.9  Biconvex lens

Fig. 3.10  Design of a biconvex lens
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Thus the real pupil is at the distance of 
3 60 0 06 3 66. . .� � mm  from the image prin-
cipal plane of the cornea. The refractive index 
of aqueous humor is 1.3374 and the corneal 
power is Dc . According to the equation of 
conjugation (3.1): 
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and x = 3 10. .mm
The distance between the apex of the cor-

nea and the entrance pupil is 
3 10 0 06 3 04. . .� � mm . The entrance pupil is 
located in front of the real pupil and slightly 
enlarged. Applying the equation of transverse 
magnification (3.14), where ∆0  is the size of 
the entrance pupil and ∆  the diameter of the 
real pupil: 
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�
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thus 

	 � �o � �1 13. . 	

For a real pupil with a 6 mm  diameter (scoto-
pic vision), the entrance pupil diameter is 
6 1 13 6 78� �. . mm , for a real pupil with a 
4 mm  diameter (mesopic vision), the entrance 
pupil diameter is 4 1 13 4 52� �. . mm , and for 
a real pupil with a 2 mm  diameter (photopic 
vision), the entrance pupil diameter is 
2 1 13 2 26� �. . mm .

	2.	 The exit pupil ∆i  is conjugated to the real pupil 
∆  in the image space when the light beam goes 
through the sub-optical system which is poste-
rior to the pupil (crystalline lens). In the same 

way we calculte the position and the diameter 
of the exit pupil of the theoretical eye. The 
refractive index of aqueous humor is 1.3374 
and the crystalline lens power is Dcl . The pupil 
is at the distance of 3 60. mm  from the vertex. 
The distance x between the corneal apex and 
the object principal plane of the crystalline lens 
is 6 02. mm . The distance between the real 
pupil and the object principal plane of the crys-
talline lens x is 6 02 3 60 2 42. . .� � mm . The 
distance between the image principal plane of 
the crystalline lens and the image of the real 
pupil after passing through the crystalline 
lens is x′ . According to the equation of conju-
gation (3.1): 
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we get 
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530 86
0 00252
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,
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and x� � 2 52. .mm
The distance between the corneal apex and 

the image principal plane of the crystalline 
lens is 6 20. mm . The distance between the 
apex of the cornea and the exit pupil is 
6 20 2 52 3 68. . .� � mm .

The exit pupil is located behind the true 
pupil and slightly enlarged. Applying the 
equation of transverse magnification (3.14), 
where ∆i  is the diameter of the exit pupil and 
∆  the diameter of the real pupil, the diameter 
of the exit pupil ∆i  is obtained as 
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Fig. 3.11  Entrance and 
exit pupils of the eye. 
AB ( ∆o ) is the entrance 
pupil, and A B′ ′  ( ∆i ) is 
the exit pupil

To calculate the diameter of the exit pupil 
based on the diameter of the entrance pupil, 
we have 

�
�

�
�

� � �o
i

o

1 13 1 13
1 04

. .
. ,and we get

	

thus 

	 � �i o� �0 92. . 	

Consequently, the diameter of the exit pupil is 
equal to the diameter of the entrance pupil 
multiplied by 0 92. . Thus, for a real pupil with 
a 6 mm  diameter (scotopic vision), the exit 
pupil diameter is 6 78 0 92 6 24. . .� � mm , for 
a real pupil with a 4 mm  diameter (mesopic 
vision), the exit pupil diameter is 
4 52 0 92 4 16. . .� � mm , and for a real pupil 
with a 2 mm  diameter (photopic vision), the 
exit pupil diameter is 2 26 0 92 2 08. . .� � mm .

The pupil magnification is the ratio of the 
diameter of the exit pupil to the diameter of 
the entrance pupil (Fig. 3.11): 

	
MP

i

o

�
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�Matrix Method in Paraxial Optics

The matrix method provides an alternative way 
for solving paraxial optics problems. Matrices 
are a mathematical tool designed to deal with lin-
ear equations, so that it is natural to apply matri-
ces to paraxial ray tracing. The matrix method 
will be used to find the first-order properties of 
the schematic eye and to calculate its cardinal 
elements.

�Elementary Matrices

�(a) Vergence of a Spherical Surface
By definition, the vergence or dioptric power of a 
spherical surface, which separates two media 
with indices n1  and n2 , is 

	
V

n n

R
�

�2 1 ,
	

where R SC≡  is the radius of curvature in alge-
braical value of which the sign is linked to the 
direction of the incident light. When R is 
expressed in meter, the unity for the vergence is 
the diopter ( ).δ

�(b) Refraction Matrix
In the Gaussian approximation, the linearity of 
the equations of crossing a spherical surface sug-
gests to use the matrix calculation. The column 
matrix is defined with the first element X which 
is the position x of the crossing point of the ray 
with the interface and the second element nα  or 
optical angle which is the product of the index 
by the tilt angle of the ray with the optical axis: 
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n
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The crossing of a spherical surface is written as 

	

x x

n V n� �
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�
�

2 1

1 0

1 	
in a condensed form, X XS2 1=( ) , where 

R
1 0

1–V  

is the refraction matrix of the spherical surface.
The value of the determinant of ( )S  is 1: det 

 = 1 .
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�(c) Translation Matrix
The translation matrix is the transformation 
matrix of the column matrix X between two fron-
tal planes A xy1  and A xy2  located in the same 
homogeneous medium. Using the complex nota-
tion and introducing the index, the equations of 
transformation are 

	
x x

A A

n
n n n2 1

1 2
1 2 1� � �( ) ( ) ( ) .� � �and

	

Matrix-wise, this is written as 

	

x x
n

A A n
n� �

�

�
�

�

�
� �

�

�
�

�

�
�
�

�
�

�

�
�

2

1 2

1

1

0 1
.

	

In a condensed form, X A A X2 1 2 1=  ( )  with 

( ) =
A A

A A
1 2

1 2
1

0 1

/n

 

The effective length that characterizes the trans-
lation matrix is the reduced length A A n1 2

. The 

value of the determinant of  ( )A A1 2  is 1: det 

 ( )A A1 2 1= .

�Centered Systems

A centered system is composed of many refrac-
tive or reflective surfaces, usually spherical, such 
that the set has a symmetry around the same axis 
of Oz. The centered optical systems, composed of 
a series of homogeneous media, separated by 
spherical interfaces, are characterized in the 
Gaussian approximation by a linear relationship. 
Two methods are used to get the image of an 
object. The first is algebraical, and it is based on 
the conjugate relationships between the positions 
of the objects and the corresponding images. The 
second is geometrical, and it visualizes the par-
ticular rays of light.

�(a) Transfer Matrix of a Centered 
System
Let us consider a centered system made up of p 
refractive spherical surfaces separated by homo-

geneous media.E is the first interface and S is the 
last interface of the system. Let T ES( )  be the 
transfer matrix of the system. The parameters 
that define the ray of light in all the frontal plane 
are the following complex numbers: the abscissa 
x x iy� �  and the optical angle � � �� �n i( ). 
Therefore the entrance and exit matrices are writ-
ten as 

	
X

n
X

n

x x
e

e

s

s
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�
�
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�
�� �

and .
	

The product of elementary matrices of translation 
  and of refraction  , writen from right to left 
following the succession of the spherical surfaces 
crossed by light, is a matrix T ES( )  with four ele-
ments. By definition 

	
T ES S S S S S S ESp p( ) ( ) ( ) ( ) ( ) ( )≡ T R T R T 1 2 1 1 	

is the transfer matrix of the centered system. It is 
written as 

	
T ES

a b

c d
( ) .�

�

�
�

�

�
�

	

The relationship X XT ESs e= ( )  is explained as 
follows: 

X x xa b n n c d ns e e s e e� � � �( ) ( ) ( ) .� � �and

The four elements a b c, , , and d, callled Gaussian 
constants, are linked by a relationship because 
the determinant of T ES( ) , the product of matri-
ces of determinants equal to 1, is also equal to 1.

�(b) Vergence of a Centered System
The transfer matrix T A A( )1 2  between two frontal 
planes A xy1  and A xy2 , respectively, located in 
the object space and in the image space, with the 
indices no  and ni , is expressed as 

	 T A A SA T ES A E( ) ( ) ( ) ( ).1 2 2 1=   	

This matrix transfer of the total system which 
takes a ray from the object to the image is named 
conjugate matrix. For the couple of points A1  
and A2 , with z EA1 1≡  and z SA2 2≡  and with 
T Aij ( )  the elements of the conjugate matrix, the 
previous relationship is written as 
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which gives in performing and in identifying 
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By definition the vergence of a system is the 
opposite of c: 

	 V c� � . 	
Matrix-wise, we write 
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or in a condensed form, X XT ESs e= ( ) , from 
where n Vxi s e� � � .
If V > 0 , the system is converging. If , the sys-
tem is diverging. If V = 0 , the system is afocal.

�(c) Conjugate Matrix
Let us consider a centered system and two conju-
gates planes which are perpendicular to the opti-
cal axis and which contain the points A A Bo i o, , , 

and Bi . We write z EAo o≡  and z SAi i≡ . Each 
element of the transfer matrix of the system 
between these two conjugate planes or a conju-
gate matrix is written as 
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Explaining the matrix relationship 

X XT A Ai o i o= ( ) , it becomes 
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As the position xi of the image Bi  is independent 
of the tilt α o of the rays coming from Ao , we 
obtain the conjugate relationship which is given 
T A12 0( ) ≡  and let 

a b dz
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z
n

z
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o

o

i

i

o

o
( )V 0

 

The transverse magnification Mt , in the case of 
the Gaussian approximation, is given by the 
formula: 

	

M
A B

A B
t

i i

o o

= .

	
T A11( )  is identified to the transverse magnifica-
tion Mt .
The angular magnification is defined by 
Ma i o xo

� �( )� � 0.

T A22 ( )  is worth: 
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n
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� 	

	
T A

n

n
Mi

o
a22 ( ) .=

	
The transfer matrix between two conjugate 
planes is written as 

T A A
M
V n n Mo i
t

i o a

( )
( / )

0

–  

The determinant of T A Ao i( )  being equal to 1, we 
get the Lagrange and Helmholtz relation: 

n
n M Mi

o
t a �1

 

Which is also written as 

	 n x n xo o o i i i� �� . 	

3  Gaussian Optics



96

�(d) Homographic Relation
By definition a homographic function is repre-
sented in the form of a quotient of affine func-
tions which can be written as 

	
y

ax b

cx d
�

�
�

.
	

This function determines a bijection if 
( ) .ad bc� � 0  Every object point and its image 
point form a conjugate pair, and by the principle 
of inverse return of the light, the pair persists 
when the image becomes object and vice versa. 
This relation is easily obtained with the help of 
the matrices T ES( )  and T A Ao i( ) . With the usual 
notations ( z EAo o= , z SAi i= , etc.), as Ao  and 
Ai  are conjugated, we get 

T a zn b z
n V z
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o

i

i

o

o
12

0 0( ) ( )A –
 

It results the following homographic relation: 

z
n

az n b
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o o

o o
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�Cardinal Elements

In the Gaussian optics or paraxial approximation, 
the cardinal elements are sufficient to calculate 
the position and the size of the image of an object. 
These elements are the focal lengths (and the 
focal planes), the principal planes, and the nodal 
points (Fig. 3.12).

   

	(a)	 Focal lengths
By definition, the image and object focal 

lengths are the following algebraical 
quantities: 

f n
V f n

Vi o oi� �and –
 

If V fi> >0 0,  and fo < 0. On the other side, 
if V fi< <0 0,  and fo > 0. If the extreme 
media are identical, f fi o� � .

	(b)	Principal planes
Principal planes are frontal conjugate 

planes H xyo  and H xyi  such that the trans-
verse magnification Mt  is equal to unity. It 
results that the transfer matrix T H Ho i( )  
between the principal planes has for 
expression 

	
T H H
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1 	

and we can write 
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d V EH
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11 221 1( ) ( )
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� �

and

	

Therefore, the positions of the principal 
planes of a centered system, in function of 
the transfer matrix T ES( )  of this system, are 
given by the relations: 

SH f a EH f di i o o( ) ( )1 1and  

Fig. 3.12  Cardinal 
elements
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	(c)	 Nodal points
The two nodal points, No  and Ni , are 

two conjugate points located on the optical 
axis such that all incident rays going through 
No  emerge from Ni  in parallel to its inci-
dent direction. Therefore 

Ma
i

o xo

1

0

1

 

The transfer matrix T N No i( )  is written as 
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From where the following relationships, 

	

T N n
n

a V SN
n

T N n
n

d V EN
n

o

i i

i

o

o

o

11
1

22( ) ( )� � � �

� �

and

	

and the positions of these points from E and S: 

EN f d n
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o
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i
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similarly from the principal planes Hi  and Ho , 

H N H N f fi i o o o i 

Thus the distances H Ho i  and N No i  are equal.
	(d)	 Focal planes

These frontal planes in the object space 
and in the image space are written as F xyo  
and F xyi  and are defined as follows:

All the incident rays of light, coming from 
Fo , emerge parallel to the optical axis.

All the incident rays of light, parallel to 
the optical axis, emerge converging to Fi .

Object focal point Fo

To locate Fo , the relationship between the 
entrance and exit parameters is written as 

x ax bn n Vx dns e o e i s e o e� � � � �� � �and . 	

As �s � 0, whatever xe  and αe , it becomes 
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So, the incident rays of light come from a point 

Fo  such that, algebraically, 
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It results 

EF f d H F H E EFo o o o o o ofand  

Image focal point Fi

As in this case �e � 0  whatever xs  and αs , it 
becomes 

	 x ax n Vxs e i s e� � �and � , 	

hence 
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So, the rays of light emerge at the point Fi  such 
that, algebraically, 
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It results: 

SF f a H F H S SFi i i i i i ifand  
In summary, the cardinal elements calculated 
with the Gaussian constants a b V, ,− , and d of the 

transfer matrix 
a b

V d�
�

�
�

�

�
�  of a centered system 

are 
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�Limits of Paraxial Approximation 
for the Eye

Two preliminary questions arise: Is the eye a 
centered system and can we use the paraxial 
approximation under normal conditions of 
vision? Strictly, the eye is not a centered system. 
The four diopters of the eye, anterior and poste-
rior corneal surfaces and anterior and posterior 
surfaces of the crystalline lens, are not surfaces 
of revolution. The eye has at least eight surfaces 
with discontinuity of indices: two for the cornea 
(epithelium and cornea) and six for the cristal-
line lens (nucleus and cortex). The surfaces of 
the cornea and the cristalline lens are not spheri-
cal. The axis of the cristalline lens does not go 
through the axis of the cornea. This gap can be 
higher than 0.1  mm which is equivalent to an 
imprecision of 1   to 2   on the definition of the 
optical axis.

With a pupil diameter of 4  mm and a mean 
radius of corneal curvature of 8 mm, the sine of 

an angle of incidence i of a ray of light parallel to 
the axis and going through the border of the 
pupille is 0 25.  or about i = 14 5.  , that is to say 
i = 0 253.  rad. There is a difference of more than 
1 %  between i and sin i .

For the posterior surface of the crystalline 
lens, the differences between the angles of inci-
dence and their sine are even higher; so all in all 
a difference of more than 2 %  is likely between 
the paraxial way and the true way of the ray of 
light. For an ocular vergence of about 60 δ , this 
2 %  difference is more than one diopter. Strictly 
speaking, we must study the formation of the 
images on the retina only in thinking about the 
true propagation of the ray of light from the cor-
neal vertex to the retina.

Moreover the optical axis, pupil axis, line of 
sight, and visual axis are not aligned.

Despite that, the paraxial approximation can be 
used to study the optics of the vision and the cor-
rections of the ametropia with the glasses or with 
the shaping of the cornea with an excimer laser, 
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Fig. 3.13  Interfaces of 
the schematic eye

because the analysis of the difference between the 
true ray tracing and the paraxial approximation 
involves little in the correction. Indeed in first ana-
lysing, the paraxial approximation can be used for 
the eye because on the one hand the cornea flattens 
from the center to the periphery, and on the other 
hand the aberrations of the eye are a constant data 
for the non-corrected eye as for the corrected eye.

However for the intraocular lens correction of 
cataract surgery, the clinical studies show that the 
expected results of the formulas using only the 
paraxial approximation differ from the achieved 
results with a standard deviation of ±  1 diopter. 
These formulas must be adjusted including a cor-
recting factor which is calculated usually with a 
statistical regression formula.

�Schematic Eye

The eye is a complex optical system having a 
succession of spherical interfaces which are not 

perfectly spherical, of which media are differents 
and the index of the cristalline lens is not a con-
stant. The schematic eye is an optical system 
obtained by taking into account the succession of 
the four spherical diopters centered on the same 
axis for which we calculate, in the Gaussian 
approximation, the cardinal elements and the 
ocular optical constants. The human theoretical 
eye is a fictitious eye which represents a mean of 
the dimensions of the adult eye for which we cal-
culate in the Gaussian approximation the cardinal 
elements and the ocular optical constants 
(Fig. 3.13).

The matrix calculation has been applied to 
the eye for the first time by Le Grand and 
Bourdy (Table  3.2). The use of the matrices, 
applied to Colliac’s theoretical eye, allows to 
find right away the formulas of association of 
a combination of optical systems and to calcu-
late the cardinal elements (Fig.  3.14 and 
Table 3.3). 

Fig. 3.14  Principal 
planes of a schematic 
eye

Table 3.2  Gaussian elements of the transfer matrix of the eye

Gullstrand Legrand Colliac

A T= 11
0.756 0.7446 0.7415

B T= 12
0.0052 0.0054 0.0054

C T= 21
-58.5849 -59.940 -61.1514

D T= 22
0.9198 0.9044 0.8992
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Table 3.3  Theoretical eye

Gullstrand Legrand Colliac
Refractive indices
Cornea 1.376 1.3771 1.376
Aqueous humor 1.336 1.3374 1.336
Crystalline lens (lens total index) 1.4085 1.42 1.42
Vitreous body 1.336 1.336 1.336
Abscissas (from the corneal apex)
Posterior surface of the cornea 0.5 0.55 0.55
Anterior surface of the lens 3.60 3.60 3.60
Posterior surface of the lens 7.20 7.60 7.60
Radii of curvature
Anterior surface of the cornea 7.70 7.80 7.75
Posterior surface of the cornea 6.8 6.5 6.89
Anterior surface of the lens 10 10.2 10.10
Posterior surface of the lens -6 -6 -5.67
Vergences
Anterior surfance of the cornea 48.83 48.35 48.52
Posterior surface of the cornea -5.88 -6.11 -5.81
Anterior surface of the lens 5 8.10 8.32
Posterior surface of the lens 8.33 14 14.81
Nucleus of the crystalline lens 5.985
Cornea
Vergence 43.053 42.36 42.52
Position of the object principal point -0.0496 -0.06 -0.05
Position of the image principal point -0.0506 -0.06 -0.06
Object focal length -23.227 -23.61 -23.35
Image focal length 31.031 31.57 31.2
Crystalline lens
Vergence 19.11 21.78 22.78
Position of the object principal point 5.678 6.02 6.05
Position of the image principal point 5.807 6.20 6.23
Object focal length -69.908 -61.41 -58.64
Image focal length 69.908 61.34 58.64
Total eye
Vergence 58.636 59.94 61.15
Position of the object principal point 1.348 1.59 1.65
Position of the image principal point 1.602 1.91 1.95
Position of the object focal point -15.707 -15.09 -14.71
Position of the image focal point 24.387 24.20 23.80
Object focal length -17.055 -16.68 -16.35
Image focal length 22.785 22.29 21.85
Position of the nodal object point 7.078 7.20 7.14
Position of the nodal image point 7.332 7.51 7.45
Position of the entrance pupil 3.045 3.04 3.04
Position of the exit pupil 3.664 3.68 3.67
Magnification at the pupil 0.909 0.92 0.92
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For our Colliac’s schematic eye, we get the sys-
tem matrix of the eye with the four Gaussian con-
stants A, B, C, and D ( C V� � ): 

A B
C D

eye

1 0

1

1

1

1 0

14 81

2 8169

0 –– .

.

88 32

2 2829

1

1

0 1.

.

crystalline lens aqueous humor

1 0

1

1

15 81

0 3997

0.

. 11 0

148 52– .

cornea
 

A B
C D
eye eye

0 7415 0 0054

61 1514 0 8992

. .

. .–

 

The dimensions of the human eye vary from per-
son to person. The mean values of the dimension 
of an adult eye are indicated in Table  3.2. The 
crystalline lens index of the crystalline lens is not 
a constant and varies in the thickness of the lens. 
We admit that the value of the total index of the 
crystalline lens is the value of 1.42 used by 
Tscherning and Le Grand.
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